Patent Search


Desiccant tablets for gas drying


Desiccant tablets including solid potassium formate are used to dry gas, especially in natural gas transmission lines. Preferred tablets comprise 1-4% potassium formate (most preferably 2-3%), up to 1% of a surfactant as a lubricant, and the balance desiccant salts, preferably calcium chloride.


What is claimed is:

1. Method of drying gas comprising contacting gas with a bed of tablets comprising 1-4% potassium formate by weight thereby forming an aqueous solution comprising water from said gas and potassium formate from said tablet, and separating said solution from said bed of tablets.

2. Method of claim 1 wherein at least some of said solution is permitted to remain in contact with said bed of tablets and to contact said gas, whereby said solution continues to remove moisture from said gas until said tablets are substantially dissolved.

3. Method of claim 1 wherein said tablets comprise 2% to 3% potassium formate.

4. Method of claim 1 wherein said gas is natural gas.

5. Method of claim 1 wherein said tablets include desiccant salts.

6. Method of claim 5 wherein said desiccant salts comprise predominantly calcium chloride.

7. Method of claim 1 wherein said separating is accomplished by draining.

8. Method of claim 1 followed by replacing said bed of tablets with new tablets comprising solid potassium formate.

9. Method of claim 8 followed by another iteration of the method of claim 1.

10. Method of claim 5 wherein said desiccant salts include lithium chloride.

11. Method of claim 5 wherein said desiccant salts include cesium chloride.

12. Method of claim 1 wherein contacting of said gas with said bed of tablets is accomplished by flowing said gas upwardly through said bed of tablets.

13. A deliquescent gas drying tablet comprising 1% to 4% solid potassium formate and 0% to 99% alkali, alkaline earth metal or ammonium formates, chlorides, bromides or mixtures thereof.

14. A deliquescent tablet of claim 13 wherein the potassium formate comprises about 2% to about 3% by weight.

15. A deliquescent tablet of claim 14 comprising about 0.5% to about 97% calcium chloride.

16. A desiccant tablet comprising about 1% to about 4% by weight potassium formate, about 0.1 to 1% surfactant, and the balance at least one desiccant salt.

17. A desiccant tablet of claim 16 made by compression, wherein said surfactant is sodium lauryl sulfonate.

18. A desiccant tablet of claim 16 wherein said at least one desiccant salt comprises calcium chloride.

19. A desiccant tablet of claim 16 wherein said potassium formate comprises 2-3% by weight of said tablet.



Tablets containing potassium formate are useful for drying gases because of their deliquescent properties.


In the past, desiccants have been commonly used to dry gases such as natural gas, particularly for its transmission through pipelines. Typically the pipelines carry natural gas over hundreds of miles, and it is necessary and desirable to remove whatever moisture is present in the gas and/or in the pipeline. To this end, the art has employed common desiccant salts such as calcium chloride, made into tablets which tend to absorb the moisture.

An early patent to, Hutchinson, U.S. Pat. No. 2804940 suggests passing a partially dehydrated natural gas upwards through a bed of solid particulate deliquescent material such as calcium, magnesium, or lithium chloride, or mixtures of them. Certain molar ratios of chlorides and bromides are suggested by Heath in U.S. Pat. No. 2143008 and by Thomas in U.S. Pat. No. 5733841; see also Thomas U.S. Pat. No. 5766309 for a good illustration of the placement of the solid deliquescent materials in a contemporary drying vessel; this patent (U.S. Pat. No. 5766309) is incorporated by reference herein in its entirety.

A solution of 40-70% potassium formate is suggested for use as a moisture absorbent in dehumidifiers and similar devices by Atkinson in U.S. Pat. No. 5846450.


Tablets are made of powdered or crystalline potassium formate and used to remove moisture from gases such as natural gas. The tablets may contain from 0.5% to 100% by weight potassium formate, the balance being alkali or alkaline earth metal formates (preferably sodium, calcium, cesium and/or magnesium formate), chlorides and/or bromides (preferably calcium chloride, potassium chloride, cesium chloride, lithium chloride, or mixtures thereof). The tablet is preferably made under compression and, for use in gas dryers in natural gas transmission lines, preferably weighs about 7 to 15 grams so it can conveniently form a bed in a more or less conventional gas dryer. A pillow shape is convenient, but no particular shape is required for this invention. Preferred tablets comprise 97.5% calcium chloride and 2.5% potassium formate. An additional 0.5% of a binder, which is preferably sodium lauryl sulfonate, may also be used. The preferred tablets need not use these exact proportions, however--they may comprise 0.5% to 100% potassium formate, an additional 0.01% by weight to 1% by weight of a surfactant used as a lubricant, and the balance one or more alkali metal or alkaline earth metal halides.

Tablets made as described above and containing 1-4% potassium formate, most preferably 2-3% potassium formate, are particularly advantageous not only for their gas drying abilities but also because recrystallization in the sump is minimal or nonexistent.


Comparisons have been made of the tablets of the present invention, containing potassium formate, to various tablets containing calcium chloride. For the comparisons, tablets were made of each of the materials indicated. Tablets of each description were placed in a screen basket which in turn was placed in a humidifier and permitted to remove moisture from the same air. The baskets retained the tablets but permitted liquid to drain into a pan. The pans were preweighed and weighed again periodically. Results are reported in terms of weight gain (liquid) in the pans, in grams, over time. Table I presents the data obtained.

In Table 1 and elsewhere herein, CaCl2 77% is calcium chloride containing 23% moisture. 10% KCOOH means 77%CaCl.sub.2 having an additional (based on the calcium chloride) 10% potassium formate. "94%+10%KF" means, in flake form, 94% calcium chloride, 6% moisture and an additional 10% potassium formate based on the calcium chloride and moisture.

TABLE 1 Weight increase over time (grams) Product 3 hours 18 hours 25 hours 90 hours CaCl2 77% 0.7295 4.609 6.5831 19.5703 CaCl2 77% 0.4096 3.2685 4.5123 17.9454 +10% KCOOH 0.6026 6.0434 7.6411 19.6084 +10% KCOOH 0.781 5.8817 7.7085 22.1131 94% + 10% KF 0.002 4.5483 5.6003 16.0585 94% + 10% KF 0.0931 3.2718 4.294 16.8932

TABLE 2 Weight increase over time (grams) Product 16 hours 20 hours 24 hours 40 hours CaCl2 77% 8.9011 9.6635 10.0889 12.4836 94% + 2.5% KF 6.9944 8.4999 9.5212 14.1517 94% + 5.0% KF 8.245 9.0611 9.6312 12.8922 94% + 7.5% KF 7.8536 8.7734 9.9184 13.9462 94% + 10% KF 7.259 8.1575 9.1607 13.2313

In Table 2 "94%+10%KF" means 94% calcium chloride, 6% moisture and an additional 10% potassium formate based on the calcium chloride and moisture. "2.5%KF," "5%KF," and "7.5%KF" mean the indicated percentages of potassium formate in addition to the 94% calcium chloride. In Table 3 the term NH4F means ammonium formate.

TABLE 3 Weight Increase Over Time (grams) Hours Product 16 hrs 20 hrs 24 hrs 40 hrs 77% CaCl2 6.547 8.5854 9.5619 15.3974 94% CaCl2 + 5% NH4F 4.964 6.3635 7.2397 12.9733 94% CaCl2 + 7.5% NH4F 8.2826 10.3386 11.3232 15.2833 94% CaCl2 + 10% NH4F 6.4756 8.0257 9.0649 13.1451

TABLE 4 Weight Increase Over Time 2 hours 5 hours 24 hours LiCl 0.2913 1.8077 9.8172 KCOOH 0.5877 2.2647 9.993 77% CaCl2 0.0111 0.4246 4.9159 Sm. Mesh CaCl2 0.2023 0.5881 4.9159 Prilled CaCl2 0.0991 0.7136 4.6106

TABLE 5 Weight Increase Over Time 7 hrs 22 hrs 29 hrs 46 hrs 53 hrs 70 hrs 77% CaCl2 2.7918 10.2764 12.082 15.7432 16.809 19.0542 +2.5% KCOOH 3.9704 11.7115 13.8077 17.9961 19.2392 21.8174 +5.0% KCOOH 3.8633 11.5287 14.0292 17.9577 19.0072 21.1031 +7.5% KCOOH 4.8065 10.7662 13.1887 16.4462 17.7821 19.7666 +10.0% KCOOH 4.7849 10.0518 12.7825 15.8435 17.2899 18.937

For or Table 5 the indicated percentages of potassium formate were added to the standard 77% calcium chloride, which contained 23% by weight moisture at the beginning of the test.

TABLE 6 Weight Increase Over Time 4 hrs 8 hrs 24 hrs 28 hrs 48 hrs 94% CaCl2 + 10% NaCl 0.8145 2.1562 8.3738 9.5873 15.6393 94% CaCl2 + 20% NaCl 1.4649 2.6146 8.4068 9.303 14.9175 100% KCOOH + 20% NaCl 2.0998 3.8347 10.8299 12.3011 15.5572 100% KCOOH + 20% NaCl 1.3877 2.6183 9.3758 11.2575 14.1278 94% CaCl.sub.2 + 20% CaBr.sub.2 0.8164 1.5235 6.7693 7.7308 13.4968

For Table 6 the indicated additions of sodium chloride and calcium bromide were made to 94% calcium chloride in the case of the first, second and fifth tests, and to a 100% aqueous solution of potassium formate in the third and fourth tests.

In each case where potassium formate was present, the formation of the drained solution was faster than with compositions not including potassium formate. Potassium formate clearly absorbs more moisture, more readily, than the other salts tested, and clearly enhances these abilities for any of the solution combinations.

Thus it will be seen that my invention comprises a deliquescent gas drying tablet comprising 0.5% to 100% solid potassium formate and 0% to 99.5% alkali, alkaline earth metal or ammonium formates, chlorides, bromides or mixtures thereof. The composition is preferably comprises about 5% to about 99.5% by weight potassium formate and most preferably about 5% to about 15% potassium formate with the balance being desiccant salts such as alkali (including cesium), alkaline earth metal or ammonium formates, chlorides, bromides or mixtures thereof, with calcium chloride being preferred.

Following in Table 7 is a comparison of a tablet of the present invention, comprising 77% calcium chloride, 2.5% potassium formate, and water (Tablet Z), to a tablet containing no potassium formate--that is, comprising 77% calcium chloride and water (Tablet A). All four tests were conducted at the same natural gas line site.

TABLE 7 Meter pressure 611 612 621 631 Gas flow rate (MMscfd) 1.19 1.183 1.071 0.97 Inlet temperature (.degree. F.) 68 80 90 100 Inlet gas moisture (lbs H.sub.2 O/MMscfd) Sat. Sat. Sat. Sat. Outlet gas moisture (lbs H.sub.2 O/MMscfd) Tablet A 5.0 5.8 6.4 11.0 Tablet Z 2.9 4.9 5.7 6.1

Tablet Z, containing 2.5% potassium formate, was not only clearly superior in drying the gas, but also showed no signs of recrystallizing in the sump, in contrast to liquid generated by Tablet A.

Heater device for desiccant rotor dehumidifier
Desiccant bag with integrated filter and method of making same
Desiccant device and humidity measuring means
Process for the regeneration of a desiccant
Regenerative desiccant bundle
Desiccant dehumidification system
Desiccant structures for OLED displays

PAT. NO. Title
7037393 Method of constructing a desiccant container
7022167 Desiccant dehumidifier hose connector
7017356 HVAC desiccant wheel system and method
7014690 Expandable desiccant element
6986807 Desiccant bottle cap
6968713 Desiccant cup with integral filter
6845513 Ballistic body armor employing combination of desiccant and ballistic material
6843387 Cover for desiccant dispenser
6835953 Desiccant structures for OLED displays
6833668 Electroluminescence display device having a desiccant
6786953 Spin-on desiccant cartridge with integral oil removal filter
6770502 Method of manufacturing a top-emitting OLED display device with desiccant structures
6685452 Implantable drug delivery pump with desiccant humidity protection
6623549 Dye wafer retention in a desiccant container
6565999 Desiccant-free heat and moisture exchange wheel
6534571 Desiccant dispersion for rubber compounds
6531197 Desiccant barrier container
6530973 Air desiccant system and method for automotive climate control
6511525 Method and apparatus for extracting water from air using a desiccant
6506233 Desiccant tablets for gas drying
6494962 Method of using a desiccant for the substantially complete absorption of moisture from a spill location
6493960 Parylene coated desiccant sheet with activation strip
6481241 Accumulator desiccant bag and method of assembling
6467185 Potted timer and circuit board assembly for use in a regenerative desiccant air dryer
6453576 Control of solids deposition from used desiccant solution

Copyright © 2006 - 2015 Patent Information Search